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Abstract
This paper focuses on upscaling of the transport equation for heterogeneous
porous media with random flow. We consider the local flow field being a
stationary random field and develop an upscaling by the recently developed
coarse graining method which is based on filtering procedures in Fourier
space. The coarse graining method is used to obtain an upscaled dispersion
tensor which depends on the given length scale of the upscaling. We give
explicit results for the scale-dependent dispersion coefficient in lowest-order
perturbation theory. For finite length scales the upscaled dispersion models the
effect of the unresolved subscale flow fluctuations, and for a global upscaling
the upscaled value agrees with the well-known macrodispersion coefficient,
which is, however, nearly approached for length scales larger than tenfold of
the correlation length.

PACS numbers: 05.10.Gg, 47.55.Mh

1. Introduction

Solute transport in porous media is usually dominated by the flow which involves multiple
scales due to the heterogeneities of the media. To analyse the transport of dissolved pollutants
in saturated aquifers stochastic models have become an invaluable tool, see [7, 12, 4]. In
the stochastic approach the strong heterogeneities of the medium are modelled as a time-
independent random field with given statistical properties. The characteristic large-scale
behaviour then follows from appropriately defined averages over the ensemble of all possible
aquifer realizations. The approach has been used in the past to determine ensemble-averaged
dispersion coefficients as well as effective dispersion coefficients for the macroscopic scale
behaviour, see e.g. [14, 13, 7, 12, 9]. However, the study of scale-dependent dispersion
coefficients for transient transport with the help of the stochastic approach was rarely focused.
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Besides the works [15, 16, 2], in which block-effective dispersion coefficients are formulated
for transport simulations, there have been only small efforts to obtain upscaled dispersion
coefficients that explicitly depend on the given length scale and, therefore, predict the scale
transition from micro to macro scale. Since experimental results of macroscopic dispersion
coefficients crucially depend on the resolution scale at which the measurements are done
it is also important to study the impact of the resolution scale on the transport of a solute
concentration distribution [6]. It is clear that in cases of upscaling to infinite length scales
an appropriately defined scale-dependent dispersion coefficient should coincide with the
ensemble-averaged dispersion coefficient given as the large-scale transport parameter, which
is called macrodispersion, in the stochastic framework, see e.g. [9]. The importance of
understanding how the transport equation depends on the resolution scale also becomes
apparent when constructing numerical models with coarser resolution. Here, upscaling
methods can be utilized to incorporate subgrid-scale information into the transport parameters
of numerical models on coarser grids, see e.g. [11].

For the case of upscaling of fine-scale hydraulic conductivity fields there are innumerable
works to determine effective conductivity coefficients on larger scales, see e.g. [18] for an
overview. In that particular case the recently developed coarse graining method proved very
useful, see [5, 3, 10]. This method was introduced for upscaling the hydraulic conductivity of
porous media and succeeded in describing the flow equation on coarser resolution scales. As
shown in [10], the method predicts the scale-dependent transition for the effective conductivity
tensor correctly. Further, the method is very successful when applied in numerical methods
and applications like multigrid methods, see [11].

For the present study we use the theoretical concept given by the coarse graining method
to scale up the time-dependent transport process given by the convection–diffusion equation.
We utilize the method for upscaling the heterogeneous flow fluctuations and focus on scale-
dependent dispersion coefficients which arise from the upscaling of the heterogeneous flow
in the case of transient transport in saturated media. For finite length scales the resulting
upscaled dispersion coefficient models the effect of the unresolved subscale flow fluctuations,
and for an infinite length scale, also termed global upscaling, the upscaled value agrees with
the well-known macrodispersion coefficient from the literature.

The paper is organized as follows. The next section is devoted to the transport model
and the stochastic modelling. In section 3 we describe the coarse graining method and derive
the upscaled transport equation. Section 4 gives explicit results for the upscaled dispersion
tensor by a perturbation theory, and it comprises the discussion of the results. The last section
concludes with a summary.

2. The model

2.1. Transport equation

The steady-state process of a solute in a heterogeneous porous medium is given by a
convection–diffusion equation (see, e.g. [7, 12])

∂

∂t
c(x, t) + ∇ · (u(x)c(x, t)) − ∇ · D∇c(x, t) = ρ(x)δ(t) (1)

where c(x, t) is the spatial concentration of the mobile solute. Because of spatial fluctuations
in the local hydraulic conductivity of the medium the flow velocity u(x) varies locally as given
by Darcy’s law. However, as a consequence of the incompressibility of the fluid, it fulfils
∇ · u(x) = 0. The tensor D is the local diffusion tensor which includes all dispersion effects
due to fluctuations on microscopic scales. Its general structure is discussed in [17]. Due to its



Upscaling and dispersion for transport in heterogeneous media 9589

dependence on the flow, D is a spatially fluctuating quantity. However, the consideration of
this dependence only yields negligible contributions to the transport parameters, see e.g. [13].
We assume a constant local diffusion tensor which is of diagonal form, Dij = Diiδij . The
right-hand side ρ(x) of equation (1) is a source or sink term.

In the framework of the second-order perturbation theory used to obtain explicit results,
the dispersion coefficient is completely determined by the mean value and the two-point
correlation function of the random flow field.

2.2. Correlation function

In the stochastic approach the spatially inhomogeneous distribution u(x) in the given aquifer
is identified with one single realization of a spatial stochastic process defined by the ensemble
of all possible realizations. We assume this process to be statistically translation invariant in
space. It implies that the ensemble average u(x) does not depend on the spatial position x.
The over-bar always stands for the average over the ensemble. We split the flow field into a
deterministic and a random contribution,

u(x) = u − w(x) (2)

where u = u(x) is the constant averaged flow velocity and w(x) is the random fluctuation
field about the mean value. Without loss of generality the mean flow is aligned with the
x1-direction, that is, ui = u0δ1i .

For a Gaussian random field the flow contribution wi(x) is a random function with zero
mean. Following [13] we define

ŵi(k)ŵj (k′) = (2π)dδ(k + k′)u2
0pi(k)pj (k)Ĉ(k), (3)

where the Fourier transform is defined by ĝ(k, t) = ∫
exp(−ik · x)g(x, t) ddx and g(x, t) =∫

k
eik·x ĝ(k, t). As a convenient shorthand notation we use

∫
k
. . . ≡ (2π)−d

∫
ddk . . . .

The function Ĉ(k) in (3) is the autocorrelation spectrum of the log-hydraulic conductivity
of the heterogeneous media. The approach is mathematically well-defined subject to some
additional requirements for C that can be found e.g. in [12]. The particular functional form
of C is to some extent arbitrary. Reflecting the situation in a heterogeneous aquifer it should
drop to zero sharply for lengths larger than the correlation length scales li . We choose a
Gauss-shaped function for C. Thus the autocorrelation spectrum Ĉ(k) is given by

Ĉ(k) = q0(2π)d/2
d∏

i=1

li exp

(
−k2

i l
2
i

2

)
. (4)

The variance q0 measures the strength of the heterogeneities, and li , i = 1, . . . , d, denotes
the correlation length of the field in the direction of xi . In the anisotropic case two or more
correlation lengths are unequal. For an isotropically correlated field the lengths li are equally
denoted by l0. In that case, the correlation function merely depends on the distance |x − x ′|
of the two points.

The functions pi(k) in (3) are projectors which ensure the incompressibility of the fluid.
In a d-dimensional system (d � 2), they are given by pi(k) = δ1i −k1ki/k2, i = 1, . . . , d, see
[13]. The autocorrelation functions of the components of the flow field then read according
to [13]

wi(x)wj (x ′) = u2
0

∫
k

exp(ik · (x − x ′))pi(k)pj (k)Ĉ(k).
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3. The coarse graining method

In the following we develop the upscaling for the transport equation using the coarse graining
technique. The coarse graining method was developed and applied in [3, 10] to scale up
the flow equation with a given heterogeneous hydraulic conductivity field. The upscaling is
based on filtering in Fourier space, i.e. high oscillatory modes are eliminated by cutting off
the function values of the Fourier transform for large wave vectors.

In the case of upscaling the transport process the coarse graining method results in an
upscaled transport equation on larger scales starting from the transport process with the fine-
scale flow. The method does not model the fine-scale heterogeneity up to a given length scale λ

explicitly, but models the influences of the subscale fluctuations by a scale-dependent upscaled
dispersion coefficient. The upscaled coefficient incorporates the impact of the unresolved fine-
scale flow fluctuations. In the following, we denote the coarser length scale by λ and apply
Einstein’s sum convention.

3.1. Coarse graining for the transport equation

The starting point of the coarse graining method is the transport equation (1) that in Fourier
space reads
∂

∂t
ĉ(k, t) + (iuj + kmDmj )kj ĉ(k, t) = δ(t)ρ̂(k) +

∫
k′

Ŵ (k, k − k′)ĉ(k′, t), (5)

using the definition Ŵ (k, k′) := ikj ŵj (k
′) and applying

∑d
j=1 kj ŵj (k) = 0 due to the

incompressibility. For ŵ(k) ≡ 0 and a point-like injection, that is ρ̂(k) = 1, the solution of
(5) denoted by ĉ0 reads

ĉ0(k, t) = �(t) exp(−kmDmjkj t − ikjuj t)

where �(t) denotes the Heaviside step function, see [1]. Due to its variations the flow field
u : R

d → R
d , x �→ ui(x), i = 1, . . . , d, is assumed to be a realization of a scalar random

field with mean ui and fluctuations wi(x) as given by (2). As boundary conditions we choose
zero boundary conditions at infinity.

Equation (5) is transformed for an arbitrary ρ̂ into the equivalent integral equation,

ĉ(k, t) = ĉ0(k, t)ρ̂(k) +
∫ ∞

−∞
dt ′ĉ0(k, t − t ′)

∫
k′

Ŵ (k, k − k′)ĉ(k′, t ′). (6)

Definition 1. We introduce projections P + and P − for cutting off low and high frequency
modes in Fourier space:

P +
λ,k(ĉ(k, t)) :=

{
ĉ(k, t) if |ki | > as/λ for an i ∈ {1, . . . , d}
0 otherwise,

P −
λ,k(ĉ(k, t)) :=

{
ĉ(k, t) if |ki | � as/λ for all i ∈ {1, . . . , d}
0 otherwise,

where P +
λ,k

(
P +

λ,k(ĉ(k, t))
) = P +

λ,k(ĉ(k, t)), and for P −
λ,k analogously. The parameter as � 1

is a constant. If it is possible we will omit the index λ respectively k in the following, and
use P +

λ,k,k′(ĝ(k, k′, t)) instead of P +
λ,k

(
P +

λ,k′(ĝ(k, k′, t))
)

for a function ĝ that depends on two
Fourier variables.

Definition 2. We define an integral operator A(k, t) by

A(k, t)[f (k, t)] :=
∫ ∞

−∞
ĉ0(k, t − t ′)f (k, t ′) dt ′.
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So we immediately obtain for the solution ĉ(k, t) due to (6):

ĉ(k, t) = A(k, t)[δ(t)ρ̂(k)] + A(k, t)

[∫
k′

Ŵ (k, k − k′)ĉ(k′, t)
]

.

The inverse operator ofA(k, t) is therefore given by (A(k, t))−1 = ∂/∂t +(iuj +kmDmj )kj

which yields due to the transport equation

(A(k, t))−1[ĉ(k, t)] = δ(t)ρ̂(k) +
∫

k′
Ŵ (k, k − k′)ĉ(k′, t). (7)

Due to the definition of the projections P +
k and P −

k , the integral operator A(k, t) and its inverse
operator commutate both with P +

k and P −
k , respectively. That means that the equality

P +
k (A(k, t)[f (k)]) − A(k, t)

[
P +

k (f (k))
] = 0

and the corresponding equality for P −
k holds true. Using the defined projections we easily get

P +
λ,k(ĉ(k, t)) = P +

λ,k(A(k, t)[δ(t)ρ̂(k)]) + P +
λ,k

(
A(k, t)

[∫
k′

Ŵ (k, k − k′)ĉ(k′, t)
])

(8)

and the analogous expression for P −
λ,k(ĉ(k, t)). We split the Fourier transform of c by the

projections, that is, ĉ(k, t) = P −
λ (ĉ(k, t))+P +

λ (ĉ(k, t)). Inserting this identity into the integral
of (8) the expression for P −

λ (ĉ(k, t)) and P +
λ (ĉ(k, t)) are coupled with each other. Now,

the idea is to derive a closed expression for P −
λ (ĉ(k, t)) involving merely the low frequency

components. This can be achieved by substituting P +
λ (ĉ(k, t)) in the analogous expression to

(8) for P −
λ (ĉ(k, t)). Therefore, we define operators L and R by

Definition 3.

Lĉ :=
∫

L(k, k′, t)ĉ(k′, t) ddk′

:=
∫

((A(k′, t))−1[δ(k − k′)] − Ŵ (k, k − k′))ĉ(k′, t) ddk′

Rĉ :=
∫

Ŵ (k, k − k′)ĉ(k′, t) ddk′.

With the aid of equation (6), we have ĉ(k, t) = A(k, t)[δ(t)ρ̂(k) + Rĉ(k, t)] and
Lĉ = ρ̂(k)δ(t) which both lead to

Lĉ = (A(k, t))−1[ĉ(k, t)] − Rĉ(k, t). (9)

Furthermore, we obtain for P −(ĉ) and P +(ĉ):

P −(ĉ) = P −(A(k, t)[δ(t)ρ̂(k)] + A(k, t)[Rĉ(k, t)])

= P −(A(k, t)[δ(t)ρ̂(k)] + A(k, t)[R(P −(ĉ(k, t)) + P +(ĉ(k, t)))]), (10)

P +(ĉ) = P +(A(k, t)[δ(t)ρ̂(k)] + A(k, t)[R(P −(ĉ(k, t)) + P +(ĉ(k, t)))]). (11)

Further we assume that Green’s function Ĝ(k, k′, t, t ′) of the transport equation in Fourier
space exists. Due to the definition of (A(k, t))−1 and (7), Ĝ(k, k′, t, t ′) fulfils the integral
equation∫

((A(k′′, t))−1[δ(k − k′′)] − Ŵ (k, k − k′′))Ĝ(k′′, k′, t, t ′) ddk′′ = δ(k + k′)δ(t − t ′). (12)
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As a result Ĝ(k, k′, t, t ′) is merely a function of t − t ′, and for vanishing flow fluctuations
ŵ ≡ 0, that is Ŵ ≡ 0, Ĝ is simply given by Ĝ(k, k′, t − t ′) = δ(k + k′)ĉ0(k, t − t ′).
Consequently, we get for the function L(k, k′′, t) given by definition 3 using (12)∫

L(k, k′′, t)Ĝ(k′′, k′, t ′ − t ′′) ddk′′dt ′′ = δ(k + k′)δ(t − t ′). (13)

Thus the inverse of L, which fulfils (13) with right-hand side (2π)−2dδ(k − k′)δ(t), can be
written as L−1(k, k′, t) := (2π)−2dĜ(k,−k′, t). Further, Green’s function, P +

λ,k′(Ĝ(k, k′, t −
t ′)), of the transport equation in Fourier space projected on high frequencies solves due
to (12):∫

P +
λ,k((A(k′′, t))−1[δ(k − k′′)] − Ŵ (k, k − k′′))P +

λ,k′(Ĝ(k′′, k′, t − t ′)) ddk′′

= P +
λ,k,k′(δ(k + k′))δ(t − t ′).

Thus, the definition of L yields∫
P +

λ,k(L(k, k′′, t))P +
λ,k′(Ĝ(k′′, k′, t ′ − t ′′)) ddk′′ dt ′′ = P +

λ,k,k′(δ(k + k′))δ(t − t ′),

and the inverse of P +
λ,k(L(k, k′′, t)) is given by(

P +
λ,k′(L(k′′, k′, t))

)−1
:= (2π)−2dP +

λ,k′(Ĝ(k′′,−k′, t − t ′)).

By that we define the operator (P +L)−1.

Definition 4.

(P +L)−1ĉ :=
∫ (

P +
λ,k′(L(k, k′, t))

)−1
ĉ(k′, t ′) ddk′ dt ′

= (2π)−2d

∫ t

0
dt ′

∫
P +

λ,k′(Ĝ(k,−k′, t − t ′))ĉ(k′, t ′) ddk′.

Now, equation (11) leads to

P +((A(k, t))−1[ĉ]) = P +(δ(t)ρ̂(k)) + P +(R(P −(ĉ(k, t)) + P +(ĉ(k, t))))

and, applying the operator L and equation (9), to

P +(LP +(ĉ)) = P +((A(k, t))−1[P +(ĉ)] − RP +(ĉ))

= P +(δ(t)ρ̂(k)) + P +(R(P −(ĉ(k, t)))). (14)

With the inverse operator (P +L)−1 and (14) we can rewrite the solution P +(ĉ) of the transport
equation as

P +(ĉ(k, t)) = P +((P +L)−1P +(δ(t)ρ̂(k)) + (P +L)−1P +(RP −(ĉ(k, t)))).

Hence, we suceeded in formulating P +(ĉ) in terms of the solution P −(ĉ). P +(ĉ) can be
substituted into (10) to obtain a closed expression for P −(ĉ):

P −(ĉ) = P −(A(k, t)[δ(t)ρ̂(k)]) + P −(A(k, t)[R(P −(ĉ(k, t)))])

+ P −(A(k, t)[R(P +(ĉ(k, t)))])

= P −(A(k, t)[δ(t)ρ̂(k)] + A(k, t)[R(P −(ĉ(k, t)))])

+ P −(A(k, t)[RP +((P +L)−1P +(δ(t)ρ̂(k)))])

+ P −(A(k, t)[RP +((P +L)−1P +(RP −(ĉ(k, t))))]). (15)

According to the last equation in (15) we can split the solution P −(ĉ) into two parts:

P −
k (ĉ(k, t)) = A(k, t)[S(k, t)] + A(k, t)[Q(k, t)] (16)
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where

S(k, t) := P −
k

(
δ(t)ρ̂(k) +

∫
k′

Ŵ (k, k − k′)P −
k′ (ĉ(k

′, t))
)

,

and Q(k, t) := Q1(k, t) + Q2(k, t), with the functions

Q1(k, t) := P −
k

(∫
R(k, k′)P +

k′

(∫ (
P +

k′′(L(k′, k′′))
)−1

P +
k′′(ρ̂(k′′)) ddk′′

)
ddk′

)

= (2π)−2dP −
k

(∫
Ŵ (k, k − k′)P +

k′

(∫ ∫ t

0
dt ′P +

k′′(Ĝ(k′,−k′′, t − t ′))

×ρ̂(k′′)δ(t ′) ddk′′
)

ddk′
)

(17)

and

Q2(k, t) := P −
k

(∫
R(k, k′)P +

k′

(∫ (
P +

k′′(L(k′, k′′))
)−1

×P +
k′′

(∫
R(k′′, k′′′)P −

k′′′(ĉ(k
′′′)) ddk′′′

)
ddk′′

)
ddk′

)

= (2π)−2dP −
k

(∫
Ŵ (k, k − k′)P +

k′

(∫ ∫ t

0
dt ′P +

k′′(Ĝ(k′,−k′′, t − t ′))

×
∫

Ŵ (k′′, k′′ − k′′′)P −
k′′′(ĉ(k

′′′, t ′)) ddk′′′ ddk′′
)

ddk′
)

.

The function S(k, t) in (16) results from the influence of small wave vectors k. Whereas
Q(k, t) incorporates the influence of the high frequency components.

The function Q1(k, t) vanishes if the source fulfils ρ̂(k) ≡ 0. Further, it vanishes in the
cases of source terms ρ(x) which do not include any short wave components. As the source
term is usually given by experiments it normally includes only contributions varying on scales
larger than λ. Thus, the condition

ρ̂(k) := P −
λ,k(F (k)) (18)

is reasonable where F(k) is a suitable function. We assume that ρ̂ fulfils (18) in the following.
Inserting P +

k′′(ρ̂(k′′)) ≡ 0 into (17) we obtain Q1(k, t) ≡ 0.
For further simplification we assume that the influence of subscale fluctuations given by

Q(k, t) is well approximated by the ensemble average of Q. Hence, Q(k, t) is given by the
mean Q2(k, t) and (16) can be reduced to

P −
k ((A(k, t))−1[ĉ(k, t)]) = S(k, t) + Q2(k, t), (19)

where Q2(k, t) is given by

Q2(k, t) = (2π)−2dP −
k

(∫ t

0
dt ′

×
∫

ikj ŵj (k − k′)P +
k′,k′′(Ĝ(k′,−k′′, t − t ′))ikmŵm(k′′ − k)P −

k (ĉ(k, t ′)) ddk′′ ddk′
)

using Ŵ (k, k′) = ikj ŵj (k
′) and the translation invariance in Fourier space, k − k′′′ = 0,

induced by the ensemble average. Further, we approximate ĉ(k, t ′) in Q2(k, t) by the leading-
order term given by a Taylor expansion in time. Q2(k, t) is thus approximately given by

Q2(k, t) = (2π)−2dP −
k

(
ikj

∫ t

0
dt ′

×
∫

ŵj (k − k′)P +
k′,k′′(Ĝ(k′,−k′′, t − t ′))ŵm(k′′ − k) ddk′′ ddk′ikmĉ(k, t)

)
.
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With the following definition of δD∗
jm(k, t, λ),

δD∗
jm(k, t, λ) := 1

(2π)2d

∫ t

0
dt ′

×
∫

ŵj (k − k′)P +
k′,k′′(Ĝ(k′,−k′′, t − t ′))ŵm(k′′ − k) ddk′′ ddk′,

the function Q2(k, t) can now be rewritten in the form

Q2(k, t) = P −
k (ikiδD

∗
ij (k, t, λ)ikj ĉ(k, t)). (20)

The so-defined δD∗(k, t, λ) can be understood as a scale-dependent upscaled dispersion tensor.
It is induced by subscale heterogeneities varying on length scales smaller than λ. Finally, we
obtain due to (19) and (20)

P −
k ((A(k, t))−1[ĉ(k, t)]) = P −

k

(
δ(t)ρ̂(k) +

∫
k′

Ŵ (k, k − k′)P −
k′ (ĉ(k

′, t))
)

+ P −
k (ikiδD

∗
ij (k, t, λ)ikj ĉ(k, t)), (21)

therein δD∗(k, t, λ) corresponds to a non-local term in real space. It can be localized by setting
k = 0. An approximation such as δD∗(k) ≈ δD∗(k = 0) improves for increasing λ due to the
projection P −

λ,k in (21). For a global upscaling, i.e. λ → ∞, the localization becomes exact.
Thus we approximate δD∗(k, t, λ) in P −

k (ikiδD
∗
ij (k, t, λ)ikj ĉ(k, t)) by its value for k = 0, and

we neglect the correction terms arising from δD∗(k) − δD∗(k = 0). It turns out an upscaled
transport equation for the given length scale λ

∂

∂t
P −

k (ĉ(k, t)) + (iuj + kmD∗
mj (t, λ))kjP

−
k (ĉ(k, t))

= δ(t)P −
k (ρ̂(k)) + P −

k

(∫
k′

Ŵ (k, k − k′)P −
k′ (ĉ(k

′, t))
)

(22)

which includes an upscaled dispersion tensor:

Definition 5 (Upscaled dispersion tensor).

D∗
ij (t, λ) := Dij + δD∗

ij (0, t, λ) = Dij +
1

(2π)2d

∫ t

0
dt ′

×
∫

ŵi(−k′)P +
λ,k′

(
P +

λ,k′′(Ĝ(k′,−k′′, t ′))ŵj (k′′)
)

ddk′′ ddk′. (23)

3.2. Upscaled transport equation

The upscaled transport equation derived by (22) for the scale λ yields in real space

∂

∂t
cλ(x, t) + ∇ · ((u − w(x)|λ)cλ(x, t)) − ∇ · D∗(t, λ)∇cλ(x, t) = ρ(x)|λδ(t),

where w(x)|λ and ρ(x)|λ are the inverse Fourier transforms of the filtered quantities P −
λ,k(ŵ(k))

and P −
λ,k(ρ̂(k)), and cλ(x, t) is the solution on the length scale λ.

The upscaled transport equation and the upscaled dispersion tensor D∗ are the main results
of the coarse graining method. Further, equation (22) equals the original equation (5) in Fourier
space for λ = 0. In this case, Q(k, t) ≡ 0 is valid due to the projectors P + in Q(k, t). Thus we
have P −

k (A(k, t)−1[ĉ(k, t)]) = S(k, t) and D∗(t, 0) = D. Even in the hyperbolic case where
the local diffusion tensor vanishes, D = 0, i.e. the convection solely governs the transport of
the plume, the coarse graining method yields a finite upscaled dispersion D∗(t, λ).
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The result for D∗(t, λ) given by the coarse graining method can be compared with the
block-effective macrodispersion coefficient derived by a subgrid variability approach in the
recent works of Rubin et al [16, 15]. Unlike the coarse graining method their approach is
guided by the idea of upscaling homogenized areas or numerical grid blocks to fulfil the demand
for such blocks by numerical models. The corresponding expression for the scale-dependent
dispersion tensor in [16], cf equations (37) and (38), agrees with the coarse graining result
when considering the time-dependent leading-order approximation of the Green’s function
Ĝ. The length scale λ corresponds to the block or grid spacing used in these studies. Rubin
et al only give analytical results for the case of planar flow defined by an exponential log-
conductivity covariance. Whereas we derive analytical expressions for the upscaled dispersion
coefficient also for a general anisotropic model in d space dimensions.

4. Results for the upscaled dispersion coefficient

4.1. Results for a smooth cut-off function

Explicit results for D∗(t, λ) can be obtained using a perturbative expansion for Green’s function
Ĝ in equation (23). We calculate D∗(t, λ) in lowest-order perturbation theory for a smooth
cut-off function instead of the sharp projection of definition 1, as often done in the literature,
see for instance [3, 5].

Definition 6. We define the integration∫
P +

λ,k(f (k)) ddk by

∫ (
1 − exp

(
− k2λ2

2a2
w

))
f (k) ddk,

with a constant aw � 1.

4.2. Lowest-order perturbation theory

Here, we consider the general case of full anisotropy in d spatial dimensions and calculate the
diagonal components of D∗(t, λ). In lowest-order perturbation theory we obtain for Green’s
function

Ĝ(k,−k′, t) = δ(k − k′)�(t) exp(−kmDmjkj t − ikjuj t)

with summing up over the indices j and m. As shown in appendix A, the expressions of the
dispersion coefficients can be rewritten for the smooth projector P + as given by definition 6
in the form

D∗
ii (t, λ) = Dii + u0l1Mi(t/τu; 0, . . . , 0) − u0l1Mi

(
t/τu; λ2

2awl2
1

, . . . ,
λ2

2awl2
d

)
. (24)

For a d-dimensional system the functions Mi are defined by

Mi(T ; b1, . . . , bd) :=
(

d∏
n=1

l−1
n

) ∫
κ

∫ T

0
dτ exp

(
−

d∑
n=1

κ2
nbn

)

× exp

(
−

d∑
n=1

εnκ
2
nτ − iκ1τ

)
p2

i

(
κ1

l1
, . . . ,

κd

ld

)
Ĉ

(
κ1

l1
, . . . ,

κd

ld

)
, (25)

with κi = liki and inverse Peclet numbers εi := Dii

u0li

l1
li
, i = 1, . . . , d. The functions Mi

can be found in the theoretical study of Dentz et al [9] for the macrodispersion coefficient.
The constant τu := l1/u0 defines the characteristic advective timescale. Due to (24) it holds
D∗

ii (t, λ) = Dii for λ = 0.
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From Dentz et al we already know the second-order perturbative result for the ensemble-
averaged macrodispersion coefficient denoted by Dens(t), see [9], cf equation (45):

Dens
ii (t) = Dii + u0l1Mi(t/τu; 0, . . . , 0).

The result for the upscaled dispersion coefficient agrees with the macrodispersion in the limit
of upscaling to infinite length scales as shown in appendix A, that is,

lim
λ→∞

D∗
ii (t, λ) = Dens

ii (t).

In the case of stationary transport, the upscaled dispersion tensor is given by limt→∞ D∗(t, λ)

which can be simplified for the isotropic model, see below.

4.3. Isotropic model

We start with the result for the simplified case of a model with an isotropic disorder correlation
function as well as an isotropic local dispersion tensor, that is, l1 = l2 = · · · = ld = l0 in (4)
and Dij = Dδij . As a result, one has two different characteristic timescales: the advective
one, τu = l0/u0, and a dispersive timescale τD := l2

0

/
D, as discussed e.g. in [4]. The

ratio between the advective and the dispersive timescales defines the inverse Peclet number
ε = τu/τD = D/u0l0. For a realistic situation one expects ε 
 1 [13], so the two scales are
well separated, τD � τu.

For a Gauss-shaped disorder correlation function all integral expressions generated by
the second-order expansion can be evaluated explicitly in space dimension d = 3. As shown
in the following, the d = 3 result simplifies considerably in the limiting case of a finite but
small inverse Peclet number, ε 
 1, which is the most relevant case for all practical purposes
[12, 9], and times t/τu � 1.

The fact that it is possible to evaluate the perturbation theory integral expressions in
closed form actually is a lucky but nongeneric situation. For the given Gauss-shaped disorder
correlation function it is possible only for the case of odd space dimensions. For d = 2 the
expressions do not reduce to standard integrals at all. However, it is still possible to extract
the leading behaviour in the small-ε case in the more general situations where it is no longer
possible to evaluate the integrations completely, see appendix C.

4.3.1. Temporal and scale-dependent behaviour. In the advective time regime t < τu the
ensemble-averaged quantity has a restricted meaning with respect to properties found in one
given realization as the behaviour depends sensitively on the particular microscopic structure
of this aquifer, see e.g. [9]. We therefore concentrate on the more relevant time regime t � τu.

Figure 1 shows the temporal behaviour of the upscaled dispersion coefficient for times
t � 0.1τu for different values of the length scale λ. The plot follows from the explicit second-
order results for Mi for d = 3 in the isotropic model given in appendix B. It shows that the
upscaled dispersion coefficients tend to the macrodispersion result Dens for increasing length
scales λ. For finite length scales the upscaled dispersion stays below the global upscaled result
since the low frequency parts of the flow fluctuations are still modelled explicitly, compare
figure 1. However, D∗ approaches the macrodispersion coefficient Dens, and for λ/l0 = 10
the relative deviation between the quantities is less than 1.1%.

In figure 2 the scale-dependent behaviour of D∗
11(λ) is depicted for various time steps

t/τu and isotropic correlation. It clearly demonstrates the increase of D∗
11 with growing length

scale and travel time t. For very large times the upscaled dispersion coefficient again tends to
the macrodispersion coefficent Dens.
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Figure 1. Temporal behaviour of the longitudinal upscaled dispersion coefficient D∗
11(t, λ) as

given by the explicit second-order result for ε = τu/τD = 0.01 with variance q0 = 0.5 in the
isotropic case. The length scale λ/l0 varies from 0.5 to 10 (u0 = 1m/d, l0 = 1m). Dens denotes
the longitudinal macrodispersion coefficient.
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Figure 2. Scale-dependent behaviour of the longitudinal dispersion coefficient D∗
11(t, λ) given

by the result of the second-order perturbation theory for ε = 0.01 and variance q0 = 0.5 for the
isotropic model. The dotted line shows the corresponding behaviour of the upscaled dispersion
coefficient derived from the small-ε approximation for t/τu � 1 discussed in the text. Dens

indicates the macrodispersion result for t/τu = 100.

In the given second-order approach one finds for the upscaled dispersion in the stationary
case

Dii + u0l0 lim
t→∞ Mi(t/τu; 0, 0, 0) − u0l0 lim

t→∞ Mi

(
t/τu; λ2

2awl2
0

,
λ2

2awl2
0

,
λ2

2awl2
0

)

where the explicit expressions of the functions limT →∞ Mi(T ; b, b, b) can be found in
appendix B. Further, we find for the isotropic model in the given second-order approach
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for λ → ∞:

lim
λ→∞

lim
t→∞ D∗

11(t, λ) = D + q0u0l0

√
π

2

(
1 − 8ε4 exp

(
1

2ε2

)
erfc

(
1√
2ε2

)

+ 8ε4 − ε3 16√
2π

+ 4ε2 − ε
16

3
√

2π

)
,

where erfc(x) denotes the error function as defined by [1]. It agrees with the result for the
macrodispersion coefficient for t → ∞, limt→∞ Dens

11 (t), see [9] equation (50). In the limiting
case of a vanishing inverse Peclet number, that is, ε = 0 (i.e., D = 0), it reduces to the
standard result given by Gelhar and Axness [13] and Dagan [8] for the global upscaling,

lim
ε→0

lim
λ→∞

lim
t→∞ D∗

11(λ) = D + q0u0l0
√

π/2.

4.3.2. Asymptotic expansion for small inverse Peclet numbers. The explicit result given
in appendix B for the dispersion coefficients in a three-dimensional model can be simplified
considerably in the limit of a small inverse Peclet number. In that limiting case it is also
possible to derive the leading behaviour of the perturbation theory expression in the case of
arbitrary space dimensions where a full explicit evaluation of the integral expression is no
longer possible. For a d-dimensional model we find for times t � τu and for small εi 
 1

M1(t/τu; b1, . . . , bd) = q0

√
π/2

d∏
j>1

(1 + 2bj )
−1/2 + · · · , (26)

see appendix C.
To illustrate the quality of the approximation, we included the leading small-ε result for

d = 3 to the plot in figure 2. The dotted line shows the leading small-ε approximation result
for D∗

11(t, λ) as given by (26). As figure 2 demonstrates, the asymptotic expansion used to
evaluate the leading behaviour is not only valid in a mathematically asymptotic sense, it also
yields quantitatively reliable results for t/τu � 1 in the relevant parameter range for realistic
values of λ.

4.4. Anisotropic case

In the anisotropic case the functions Mi which define the upscaled dispersion coefficient D∗(λ)

no longer reduce to standard functions. In the practically most relevant case of small εi 
 1
we obtain (26) as an asymptotic result for the function M1 in a d-dimensional system for the
case t/τu � 1. Using this asymptotic evaluation of the perturbation theory expression, we are
able to derive the temporal behaviour of the transport coefficients for anisotropic models.

In figure 3 the result for D∗
11(t, λ) is plotted for cases of different correlation lengths.

The plot shows that the larger the ratio l2/l1 of the correlation lengths, the more delayed
the increase of the upscaled dispersion coefficient. This is due to the stronger longitudinal
mixing caused by the flow heterogeneities which results in a weaker upscaling of the subscale
fluctuations for a given length scale. Accordingly, the increase of the longitudinal upscaled
dispersion coefficient is shifted to larger scales.

5. Summary

The study aims at developing a new upscaling method for solute transport in heterogeneous
porous media. Upscaling for the transient transport process reveals the temporal and scale-
dependent behaviour of the transport parameters.
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Figure 3. Scale-dependent behaviour of the upscaled longitudinal dispersion coefficient D∗
11(t, λ)

for different anisotropies with variance q0 = 0.5 (t/τu = 100, u0 = 1m/d, l1 = l3 = 1m).

We introduce the coarse graining method for upscaling the flow field which varies over
many length scales induced by the heterogeneities of the hydraulic conductivity. The coarse
graining method scales the flow fluctuations on an arbitrary length scale λ by introducing
an upscaled dispersion tensor D∗(t, λ) in the transport equation. The upscaled dispersion
incorporates the impact of the subscale fluctuations which are not resolved. The method
relies on a stochastic modelling for the flow field. For a global upscaling, that is, λ → ∞, the
resulting dispersion coefficient agrees with the known result for the macrodispersion Dens given
by the second-order perturbation expansion. For finite scales the upscaled coefficient models
the effect of the unresolved subscale flow fluctuations and remains below Dens. However, Dens

is almost nearly approached by D∗ for length scales λ/l0 � 10.
On the basis of the result for the upscaled dispersion tensor given by the coarse graining it

might be possible to develop a numerical method for a local upscaling of the flow fluctuations.
This could be done similar to the numerical upscaling in the case of the flow equation as
done in [10]. Therein the numerically upscaled coefficient is obtained by the solution of an
auxiliary partial differential equation similar to the flow equation.

Appendix A. Result for the upscaled dispersion tensor

The result for the upscaled dispersion coefficient δD∗(0, t, λ) of a d-dimensional system with
diagonal local diffusion D is given by the coarse graining method as

δD∗
ii (0, t, λ) = (2π)−2d

∫ t

0
dt ′

∫
ŵi(−k)ŵi(k′)P +

k,k′(Ĝ(k,−k′, t ′)) ddk′ ddk

= (2π)−d/2u2
0q0

∫ t

0
dt ′

∫
ddk(pi(k))2

(
d∏

m=1

lm exp

(
−1

2
k2
ml2

m

))

×P +
k,λ

(
exp

(
−t ′

d∑
m=1

(
iumkm +

d∑
n=1

kmDmnkn

)))
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= (2π)−d/2u2
0q0

∫ t

0
dt ′

∫
ddk(pi(k))2

(
d∏

m=1

lm exp

(
−1

2
k2
ml2

m

))

×
(

1 − exp

(
−k2λ2

2aw

))
exp

(
−t ′

d∑
m=1

(
iumkm +

d∑
n=1

kmDmnkn

))

= (2π)−d/2q0u0l1

∫ t/τu

0
dt ′

∫
ddk

(
pi

(
k1
l1

, . . . , kd

ld

))2
exp

(
−1

2

d∑
m=1

k2
m

)

×
(

1 − exp

(
− λ2

2aw

d∑
m=1

k2
m

l2
m

))
exp

(
−it ′k1 −

d∑
m=1

t ′εmk2
m

)

= u0l1Mi(t/τu; 0, . . . , 0) − u0l1Mi

(
t/τu; λ2

2awl2
1

, . . . ,
λ2

2awl2
d

)
.

The functions Mi are defined by (25).
For infinite length scale λ the projectors vanish in the integration for δD∗. Thus,

limλ→∞ δD∗
ii (0, t, λ) is given by

lim
λ→∞

δD∗
ii (0, t, λ) = (2π)−d/2u2

0q0

∫ t

0
dt ′

∫
ddk(pi(k))2

(
d∏

m=1

lm exp

(
−1

2
k2
ml2

m

))

× exp

(
−t ′

d∑
m=1

(
iumkm +

d∑
n=1

kmDmnkn

))

= (2π)−d/2q0u0l1

∫ t/τu

0
dt ′

∫
ddk

(
pi

(
k1
l1

, . . . , kd

ld

))2

× exp

(
−1

2

d∑
m=1

k2
m

)
exp

(
−it ′k1 −

d∑
m=1

t ′εmk2
m

)

= u0l1Mi(t/τu; 0, . . . , 0).

Appendix B. Explicit results for d = 3

In the case of an isotropic velocity spectrum, that is, l1 = l2 = l3 = l0 in (4), and an isotropic
local diffusion tensor D, the perturbation theory expression (24) for the dispersion coefficient
can be evaluated explicitly, see also [9]. The functions Mi given by (25), which determine the
final result (with b1 = b2 = b3 = b in the isotropic case), read

M1(T ; b, b, b) = q0

√
π/2(1 + 2b)−1

(
erf(g(T )) +

1√
π

exp(−g2(T ))

×
(

1

g(T )
+ 4
2 f (T )

g2(T )
− 3

2

1

g3(T )

)
+ erf(g(T ))

×
(

4
2 f (T )

g(T )
− 1

g2(T )
+

3

4

1

g4(T )
− 2
2 f (T )

g3(T )
+ 8
4 f (T )

g(T )

)

− 8
4 exp

(
1

2
2

) (
erfc

(
1√
2


)
− erfc(f (T ))

)
− 4

√
8

3
√

π

 − 4

√
8√

π

3

)
,
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M2(T ; b, b, b) = M3(T ; b, b, b) = q0

√
π/8(1 + 2b)−1

×
(

1

2
√

π
exp(−g2(T ))

(
3

g3(T )
− 8
2f (T )

g2(T )

)
+ erf(g(T ))

(
1

2g2(T )

−2
2f (T )

g(T )
− 3

4g4(T )
− 8
4f (T )

g(T )
+

2
2f (T )

g3(T )

)
− exp

(
1

2
2

)

×
(

erfc(f (T )) − erfc

(
1√
2


))
(8
4 − 2
2) +

√
8


3
√

π
+

4
√

8
3

√
π

)
,

with 
 = ε(1 + 2b)−1/2 and

f (t) = 1√
2

(1 + 2b)ε−1 + t/τu√
(1 + 2b) + 2t/τD

, g(t) = 1√
2

t/τu√
(1 + 2b) + 2t/τD

where τu = l0/u0 and τD = l2
0

/
D. The explicit results for Mi are already given by Dentz

et al [9], see for M−
i (T ; b, b, b) therein.

For the case of T → ∞ in the stationary case, we obtain the expressions

lim
T →∞

M1(T ; b, b, b) = q0

√
π/2(1 + 2b)−1

×
(

1 + 4
2 + 8
4 − 8
4 exp

(
1

2
2

)
erfc

(
1√
2


)
− 4

√
8

3
√

π

 − 4

√
8√

π

3

)

and

lim
T →∞

M2(T ; b, b, b) = lim
T →∞

M3(T ; b, b, b) = q0

√
π/8(1 + 2b)−1

×
(

−2
2 − 8
4 + exp

(
1

2
2

)
erfc

(
1√
2


)
(8
4 − 2
2) +

√
8


3
√

π
+

4
√

8
3

√
π

)
.

Appendix C. Leading behaviour for small inverse Peclet numbers

For two spatial dimensions, d = 2, or a model with anisotropic local diffusion tensor and
disorder correlation function, the integrations which define the upscaled dispersion coefficients
in the second-order perturbation theory no longer reduce to standard functions. Nevertheless
it is possible to evaluate their leading behaviour in the practically most relevant case of small
inverse Peclet numbers εi for times t � τu, using the Gaussian correlation spectrum. The
upscaled dispersion D∗ is determined by the functions Mi(T ; b1, . . . , bd) given by (25). To
evaluate these functions further, we expand the exponential function exp

(−∑d
n=1 εnκ

2
nτ

)
in

the integrand of (25) into its power series,

Mi(T ; b1, . . . , bd) = q0(2π)d/2
∫ T

0
dτ

∫
κ

(
1 −

d∑
n=1

εnκ
2
nτ + · · ·

)

× exp

(
−

d∑
n=1

(bn + 1/2)κ2
n

)
exp(iκ1τ)p2

i

(
κ1

l1
, . . . ,

κd

ld

)
.

The resulting expressions can be evaluated further for t � τu. As shown in [9] a detailed
investigation for the case of widely separated scales, i.e. εn 
 1, yields for t � τu and i = 1
the leading part of the auxiliary function M1 to be

M1(t/τu; b1, . . . , bd) = q0

√
π/2

d∏
j>1

(1 + 2bj )
−1/2 + · · · ,
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where the dots indicate subleading corrections which are of the order of O(ε) and of the order
of O((t/τu)

−(d−1)) or which are already exponentially small on the advective timescale. The
result yields M1(t/τu; 0, . . . , 0) = q0

√
π/2 + · · ·.

For i = 2, . . . , d, that is, for the contributions to the transversal dispersion coefficient,
one finds that the remaining integral is of the order of (t/τu)

−(d−1) because of the special form
of the projectors pi in this case. For t � τu one gets only negligibly small corrections to the
transversal dispersion coefficient in this time regime. As is well-known from the literature,
this is a general feature of a second-order treatment for the transversal dispersion coefficient.
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